Table of Contents

1 Introduction .. 3
2 Getting Started ... 3
 2.1 Parts List ... 3
 2.2 Recommend Tools ... 3
 2.3 Thermo-Hygrometer Sensor Set Up .. 3
 2.4 Display Console Set Up ... 5
 2.4.1 Display Console Layout ... 6
 2.4.2 Sensor Operation Verification ... 7
3 Remote Sensor Installation ... 7
4 Console Operation .. 8
 4.1 Setup Mode .. 8
 4.1.1 Display Selection ... 9
 4.1.2 Graph Time .. 10
 4.1.3 Time Format .. 11
 4.1.4 Date Format .. 11
 4.1.5 Date and Time Format .. 11
 4.1.6 Temperature Units of Measure ... 12
 4.2 Calibration .. 12
 4.2.1 Notes about Calibration ... 14
 4.2.2 Humidity Calibration Methods ... 14
 4.2.3 Temperature Calibration Methods ... 15
 4.3 Min / Max and Alarm Mode ... 15
 4.3.1 Min / Max ... 15
 4.3.2 Alarms .. 16
 4.4 Factory Settings .. 19
 4.4.1 Factory Reset .. 19
 4.4.2 Clear Max/Min Values ... 20
 4.4.3 Re-register Sensors ... 20
 4.4.4 About ... 20
 4.4.5 Language .. 21
 4.4.6 Back Light ... 21
5 Other Features .. 22
 5.1 Radio Controlled Clock (RCC) .. 22
 5.2 SD Card Export and Firmware Updates .. 22
 5.2.1 SD Data Export ... 23
 5.2.2 Back Up Graph Data .. 23
 5.2.3 Firmware Updates ... 23
 5.3 PC Software ... 24
 5.3.1 Getting Started ... 24
 5.3.2 Time, Date and Display Setup ... 25
1 Introduction
Thank you for your purchase of the Ambient Weather WS-3000 Thermo-Hygrometer, Dew Point, Heat Index Wireless Monitor with Graphing, Alarming, and Radio Controlled Clock. The following user guide provides step by step instructions for installation, operation and troubleshooting. To download the latest manual and additional troubleshooting tips, please visit:

https://ambientweather.net/product/ws-3000-x5

2 Getting Started

Note: The power up sequence must be performed in the order shown in this section (insert batteries in the remote transmitter(s) first, Display Console second).

The WS-3000 weather station consists of a display console (receiver), and up to 5 thermo-hygrometers (remote transmitters), based on your order configuration.

2.1 Parts List

<table>
<thead>
<tr>
<th>QTY</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Display Console</td>
</tr>
<tr>
<td></td>
<td>Frame Dimensions (LxHxW): 4.5 x 3.75 x 1.5 in</td>
</tr>
<tr>
<td></td>
<td>LCD Dimensions (LxW): 3.75 x 2.25”</td>
</tr>
<tr>
<td>*</td>
<td>Thermo-hygrometer transmitter (WH31)</td>
</tr>
<tr>
<td></td>
<td>Dimensions (LxHxW): 4.75” x 1.5” x 0.6”</td>
</tr>
<tr>
<td>1</td>
<td>USB Cable for PC Connection</td>
</tr>
</tbody>
</table>

* 1,2,3,4, or 5, based on your order configuration.

2.2 Recommend Tools
Hammer and nail for hanging remote thermo-hygrometer transmitter(s).

2.3 Thermo-Hygrometer Sensor Set Up

Note: Do not use rechargeable batteries. We recommend fresh alkaline batteries for outdoor temperature ranges between -4 °F and 140 °F and fresh lithium batteries for outdoor temperature ranges between -40 °F and 140 °F.
1. Remove the battery door on the back of the transmitter(s) by sliding down the battery door, as shown in Figure 1.

2. **BEFORE** inserting the batteries, locate the dip switches on the inside cover of the lid of the transmitter.

3. **Channel Number:** The WS-3000 supports up to eight transmitters, and includes three transmitters. To set each channel number (the default is Channel 1), change Dip Switches 1, 2 and 3, as referenced in Figure 2.

4. **Temperature Units of Measure:** To change the transmitter display units of measure (°F vs. °C), change Dip Switch 4, as referenced in Figure 2.

 - [] Switch in down position. [] Switch in up position.
5. Insert two AA batteries.
6. Verify the correct channel number (CH) and temperature units of measure (°F vs. °C) are on
 the display, as shown in Figure 3.

7. Close the battery door.
8. Repeat for the additional remote transmitters, verifying each remote is on a different channel.

2.4 Display Console Set Up

1. Move the transmitters(s) about 5 to 10’ away from the display console (if the transmitters are
too close, they may not be received by the display console). With multiple transmitters, make
sure all transmitters are powered up and displaying different channels on the display.
2. Connect the console to AC power with the included AC adapter (Figure 4).
If the remotes do not update, please reference the troubleshooting guide in Section 10.

2.4.1 Display Console Layout
<table>
<thead>
<tr>
<th>No</th>
<th>Description</th>
<th>No</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Graph for Temperature/Dew point/heat index/humidity of Indoor/outdoor sensors.</td>
<td>6</td>
<td>Outdoor Temperature/Dew point/heat index/humidity for channel 4 and other channels defined to be displayed in CH4 area.</td>
</tr>
<tr>
<td>2</td>
<td>Date and time.</td>
<td>7</td>
<td>Outdoor Temperature/Dew point/heat index/humidity for channel 5 and other channels defined to be displayed in CH5 area.</td>
</tr>
<tr>
<td>3</td>
<td>Outdoor Temperature/Dew point/heat index/humidity for channel 1 and other channels defined to be displayed in CH1 area.</td>
<td>8</td>
<td>Alarm Icon.</td>
</tr>
<tr>
<td>4</td>
<td>Outdoor Temperature/Dew point/heat index/humidity for channel 2 and other channels defined to be displayed in CH2 area.</td>
<td>9</td>
<td>Radio Controlled Clock reception icon.</td>
</tr>
<tr>
<td>5</td>
<td>Outdoor Temperature/Dew point/heat index/humidity for channel 3 and other channels defined to be displayed in CH3 area.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.4.2 Sensor Operation Verification

Verify the humidity sensors match closely with all of the sensors in the same location (about 5 to 10’ apart). The sensors should agree within 10% (the accuracy is ± 5%). Allow about 30 minutes for all sensors to stabilize. The humidity can be adjusted or calibrated later to match each other a known source.

Verify the temperature sensors match closely with all of the sensors in the same location (about 5 to 10’ apart). The sensors should be within 4°F (the accuracy is ± 2°F). Allow about 30 minutes for all sensors to stabilize. The temperature can be adjusted or calibrated later to match each other or a known source.

3 Remote Sensor Installation

If you mount one or more of the sensors outside, it is recommended you mount the sensor in a shaded area. Direct sunlight and radiant heat sources will result in inaccurate temperature readings. Although the sensors are water resistant, it is best to mount in a well-protected area, such as under an eve. Use a screw to affix the remote sensor to the wall, as shown in Figure 6.

Alternately, you can hang the sensor with fishing wire or a string. This insures the sensor does not come into contact with any radiant heat source.
4 Console Operation

Note: The console has four buttons for easy operation: Graph, Brightness +, Brightness – and Menu.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRAPH</td>
<td>Graph key</td>
</tr>
<tr>
<td></td>
<td>Switch to display graph of Temperature/Dew point/heat index/humidity</td>
</tr>
<tr>
<td></td>
<td>for all sensors</td>
</tr>
<tr>
<td>⏩</td>
<td>Brightness control key</td>
</tr>
<tr>
<td></td>
<td>Press this key to increase the brightness</td>
</tr>
<tr>
<td>⏩</td>
<td>Brightness control key</td>
</tr>
<tr>
<td></td>
<td>Press this key to decrease the brightness</td>
</tr>
<tr>
<td>MENU</td>
<td>Menu Key</td>
</tr>
<tr>
<td></td>
<td>Press this key to enter menu and scroll to different modes</td>
</tr>
</tbody>
</table>

4.1 Setup Mode

In the Normal mode, press the MENU key once to enter Setup Mode.
Figure 8

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Scroll right key
Press this key to scroll down/right.</td>
</tr>
<tr>
<td></td>
<td>Selection key
Press this key to select and enter the option.</td>
</tr>
<tr>
<td></td>
<td>Scroll left key
Press this key to scroll up/left.</td>
</tr>
<tr>
<td></td>
<td>Mode key
Press this key to enter to next mode</td>
</tr>
</tbody>
</table>

4.1.1 Display Selection

You can customize or even scroll between various parameters within each one of the Channel areas.

Scroll ![scroll_right](image) to selected channel area (1-5), and press the plus ![plus](image) key to modify the home display screen area:
To modify the display parameter, press the up/down and left/right keys to move the blue cursor to a sensor channel number (1-8) and parameter (temperature, dew point, heat index). Press the key to display this channel and parameter in the selected area on the main screen.

For example, if you wish to display Channel 1 Dew Point in the CH Area 1, highlight the Channel 1 Dewpoint field.

If you wish to toggle both channel 1 temperature and channel 1 dew point, highlight both the Channel 1 Temperature and Channel 1 Dew Point (reference Figure 9), and the screen will toggle between the channel 1 temperature and dew point on the main screen once every 3 seconds.

4.1.2 Graph Time

To change the Graph Time on the main display, scroll to the Graph Time, and select the key to change between 12, 24, 48 and 72 hours.
4.1.3 Time Format

To change the Time Format on the main display, scroll ➜ to the Time Format, and select the ➕ key to change between AM h:mm:ss, hh:mm:ss AM (12 hour time format) and h:mm:ss (24 hour time format).

4.1.4 Date Format

To change the Date Format on the main display, scroll ➜ to the Date Format, and select the ➕ key to change between MM-DD-YYYY, DD-MM-YYYY and YYYY-MM-DD.

4.1.5 Date and Time Format

The console receives the radio controlled time signal from any one of the wireless sensors. The time and date will set automatically, and adjust for Daylight Savings Time (DST). To work properly, you must enter the time zone and DST. You can also manually enter the time.

To manually change the time and data settings, scroll ➜ to the field you wish to change, and press the ➕ or ➖ key to adjust up or down.

Turn ON the DST setting, unless you reside in Arizona or Hawaii, which do not observe Daylight Savings Time.

Adjust your time zone according to the table below:

<table>
<thead>
<tr>
<th>Hours from GMT</th>
<th>Time Zone</th>
<th>Cities</th>
</tr>
</thead>
<tbody>
<tr>
<td>-12</td>
<td>IDLW: International Date Line West</td>
<td>---</td>
</tr>
<tr>
<td>Hours from GMT</td>
<td>Time Zone</td>
<td>Cities</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>-11</td>
<td>NT: Nome</td>
<td>Nome, AK</td>
</tr>
<tr>
<td>-10</td>
<td>AHST: Alaska-Hawaii Standard CAT: Central Alaska HST: Hawaii Standard</td>
<td>Honolulu, HI</td>
</tr>
<tr>
<td>-9</td>
<td>YST: Yukon Standard</td>
<td>Yukon Territory</td>
</tr>
<tr>
<td>-8</td>
<td>PST: Pacific Standard</td>
<td>Los Angeles, CA, USA</td>
</tr>
<tr>
<td>-7</td>
<td>MST: Mountain Standard</td>
<td>Denver, CO, USA</td>
</tr>
<tr>
<td>-6</td>
<td>CST: Central Standard</td>
<td>Chicago, IL, USA</td>
</tr>
<tr>
<td>-5</td>
<td>EST: Eastern Standard</td>
<td>New York, NY, USA</td>
</tr>
<tr>
<td>-4</td>
<td>AST: Atlantic Standard</td>
<td>Caracas</td>
</tr>
<tr>
<td>-3</td>
<td>---</td>
<td>São Paulo, Brazil</td>
</tr>
<tr>
<td>-2</td>
<td>AT: Azores</td>
<td>Azores, Cape Verde Islands</td>
</tr>
<tr>
<td>-1</td>
<td>WAT: West Africa</td>
<td>---</td>
</tr>
<tr>
<td>0</td>
<td>GMT: Greenwich Mean WET: Western European</td>
<td>London, England</td>
</tr>
<tr>
<td>0</td>
<td>CET: Central European</td>
<td>Paris, France</td>
</tr>
<tr>
<td>2</td>
<td>EET: Eastern European</td>
<td>Athens, Greece</td>
</tr>
<tr>
<td>3</td>
<td>BT: Baghdad</td>
<td>Moscow, Russia</td>
</tr>
<tr>
<td>4</td>
<td>---</td>
<td>Abu Dhabi, UAE</td>
</tr>
<tr>
<td>5</td>
<td>---</td>
<td>Tashkent</td>
</tr>
<tr>
<td>6</td>
<td>---</td>
<td>Astana</td>
</tr>
<tr>
<td>7</td>
<td>---</td>
<td>Bangkok</td>
</tr>
<tr>
<td>8</td>
<td>CCT: China Coast</td>
<td>Beijing</td>
</tr>
<tr>
<td>9</td>
<td>JST: Japan Standard</td>
<td>Tokyo</td>
</tr>
<tr>
<td>10</td>
<td>GST: Guam Standard</td>
<td>Sydney</td>
</tr>
<tr>
<td>11</td>
<td>---</td>
<td>Magadan</td>
</tr>
<tr>
<td>12</td>
<td>IDLE: International Date Line East NZST: New Zealand Standard</td>
<td>Wellington, New Zealand</td>
</tr>
</tbody>
</table>

Figure 11

4.1.6 Temperature Units of Measure

To change the temperature units of measure, scroll to the Temperature Units field, and press the key to toggle between °F and °C.

4.2 Calibration

To enter the calibration mode, press the MENU key twice.
Figure 12

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
</table>
| ![Scroll down/right key](image) | Scroll down/right key
Press this key to scroll down/right. |
| ![Selection/value increase key](image) | Selection/value increase key
Press this key to select parameter and enter the calibration interface. Increase the value during calibration. |
| ![Value Decrease key](image) | Value Decrease key
Decrease the value during calibration. |
| ![Scroll up/left key](image) | Scroll up/left key
Press this key to scroll up/left. |
| ![Mode key](image) | Mode key
Press this key to enter to next mode |
| ![Return Key](image) | Return Key
Back to main menu of calibration mode. |
| ![Resume Key](image) | Resume Key
Cancel the calibration and resume. |

Figure 13

Scroll ![Scroll down/right key](image) to the temperature or humidity field you wish to calibrate, press the ![Selection/value increase key](image) key to perform the calibration, and press the ![Value Decrease key](image) or ![Scroll up/left key](image) key to match your calibration source.
4.2.1 Notes about Calibration

Note: The calibrated value can only be adjusted on the console. The remote sensor(s) always displays the un-calibrated or measured value.

Note: The measured humidity range is between 10 and 99%. Humidity cannot be accurately measured outside of this range. Thus, the humidity cannot be calibrated below 10% or above 99%.

The purpose of calibration is to fine tune or correct for any sensor error associated with the devices margin of error. The measurement can be adjusted from the console to calibrate to a known source.

Calibration is only useful if you have a known calibrated source you can compare it against, and is optional. This section discusses practices, procedures and sources for sensor calibration to reduce manufacturing and degradation errors. Do not compare your readings obtained from sources such as the internet, radio, television or newspapers. They are in a different location and typically update once per hour.

The purpose of your weather station is to measure conditions of your surroundings, which vary significantly from location to location.

4.2.2 Humidity Calibration Methods

Official stations recalibrate or replace humidity sensors on a yearly basis. Due to manufacturing tolerances, the humidity is accurate to ± 5%. To improve this accuracy, the indoor and outdoor humidity can be calibrated using an accurate source, such as a sling psychrometer or one step humidpak calibration kits available at AmbientWeather.com.
4.2.3 Temperature Calibration Methods

Temperature errors can occur when a sensor is placed too close to a heat source (such as a building structure, the ground or trees).

To calibrate temperature, we recommend a mercury or red spirit (fluid) thermometer. Bi-metal (dial) and other digital thermometers are not a good source and have their own margin of error. Using a local weather station in your area is also a poor source due to changes in location, timing (airport weather stations are only updated once per hour) and possible calibration errors (many official weather stations are not properly installed and calibrated).

Place the sensor in a shaded, controlled environment next to the fluid thermometer, and allow the sensor to stabilize for 48 hours. Compare this temperature to the fluid thermometer and adjust the console to match the fluid thermometer.

4.3 Min / Max and Alarm Mode

In the Normal mode, press the **MENU** key three times to enter Min / Max and Alarm Mode.

4.3.1 Min / Max

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
</table>
| ![Scroll down/right key](image) | Scroll down/right key
Press this key to scroll down/right. |
| ![Selection/value increase key](image) | Selection/value increase key
Press this key to select parameter to check according max/min records. Switch on/off alarms and increase the value during alarm setup. |
<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value Decrease key</td>
<td>Decrease the value during alarm setup.</td>
</tr>
<tr>
<td>Scroll up/left key</td>
<td>Press this key to scroll up/left.</td>
</tr>
<tr>
<td>Mode key</td>
<td>Press this key to enter to next mode.</td>
</tr>
<tr>
<td>Return Key</td>
<td>Back to main menu of calibration mode.</td>
</tr>
<tr>
<td>Resume Key</td>
<td>Cancel the calibration and resume.</td>
</tr>
</tbody>
</table>

Figure 15

Scroll to the temperature, humidity, dew point or heat index min/max field you wish to view, and press the key. Note that dashes (--) will be displayed for sensors that are not programmed for your system.

Figure 16

To clear all of the min and max values, refer to Section 4.4.2 for details.

4.3.2 Alarms

You can set a high and low temperature and humidity alarm on **Channels 1-8**.

If the measured value is greater than the high alarm, an audible alert will sound and the alarm icon 🚨 will flash on the alarm panel, and the alarm icon ⚠️ will appear on the main panel.
If the measured value is less than the high alarm, an audible alert will sound and the alarm icon 🚨 will flash on the alarm panel, and the alarm icon ⚠️ will appear on the main panel.

When an alarm has been triggered, the alarm will sound for 120 second and the corresponding alarm icon will flash until the alarm condition is no longer met. Press any key to silence the alarm.

The alarm icon is color coded, and will flash as shown in Figure 17 if one or more alarms are triggered.

<table>
<thead>
<tr>
<th>Alarm Type</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Alarm</td>
<td>Red – grey - red</td>
</tr>
<tr>
<td>Low alarm</td>
<td>Blue – grey - blue</td>
</tr>
<tr>
<td>High alarm & Low alarm both activated</td>
<td>Red – grey – blue – grey – red</td>
</tr>
<tr>
<td>Beep alarm stop</td>
<td>grey</td>
</tr>
</tbody>
</table>

Figure 17

Scroll ✅ to the Humidity or Temperature Alarm On/Off switch, and press the ⬆️ key to toggle the Humidity or Temperature Alarm On or Off.

Scroll ✅ to the Humidity Alarm or Temperature Alarm field, and press the ⬆️ key to display the alarm programming panel, as shown in Figure 18.

⚠️ **Note:** The alarm must be turned On to program the alarm settings.

Referring to Figure 18, scroll ✅ to the channel and alarm limit, and press the ⬆️ or ⬇️ key to adjust the alarm limit up or down. Scroll to the alarm field and press the ⬆️ key to turn the alarm bell on or off to activate the alarm.
Humidity Alarm

Humidity Units: %

<table>
<thead>
<tr>
<th>High Alarm</th>
<th>Low Alarm</th>
<th>High Alarm</th>
<th>Low Alarm</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH1 59%</td>
<td>20%</td>
<td>CH5 90%</td>
<td>20%</td>
</tr>
<tr>
<td>CH2 90%</td>
<td>20%</td>
<td>CH6 90%</td>
<td>20%</td>
</tr>
<tr>
<td>CH3 90%</td>
<td>20%</td>
<td>CH7 90%</td>
<td>20%</td>
</tr>
<tr>
<td>CH4 90%</td>
<td>20%</td>
<td>CH8 90%</td>
<td>20%</td>
</tr>
</tbody>
</table>

Humidity

The humidity range is 10% to 99%

90%
<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
</table>
| ![Scroll down/right key](image) | Scroll down/right key
Press this key to scroll down/right. |
| ![Selection/value increase key](image) | Selection/value increase key
Press this key to select parameter to set alarm thresholds and turn on the alarm icon. Red alarm icon is high alarm. Blue one is low alarm. |
| ![Value Decrease key](image) | Value Decrease key
Decrease the value during alarm setup. |
| ![Scroll up/left key](image) | Scroll up/left key
Press this key to scroll up/left. |
| ![Mode key](image) | Mode key
Press this key to back to main menu or enter to next mode |
| ![Return Key](image) | Return Key
Back to main menu of alarm menu. |

Figure 18

4.4 Factory Settings

To enter the Factory mode, press the MENU key four times.

Figure 19

4.4.1 Factory Reset

To restore to factory default, scroll ![Scroll down/right key](image) to the Factory Reset field and press ![Selection/value increase key](image) to clear all settings and restore to factory default.
4.4.2 Clear Max/Min Values

To clear all of the max and min values, scroll to the Clear Max/Min field and press to clear all of the stored max and min values.

Figure 20

4.4.3 Re-register Sensors

If sensor communication is lost with a specific sensor, you can re-acquire.

Scroll to the re-register sensors field, and press to view the re-register panel.

Scroll the sensor you wish to register, and press to re-acquire this sensor. Press the button to highlight Yes and press to confirm.

4.4.4 About

Scroll to the About field, and press to view to view the hardware and firmware version.
4.4.5 Language

Scroll ➡️ to the Language field, and press ➕ to change the language (currently only English is only supported).

4.4.6 Back Light

Scroll ➡️ to the BackLight field, and press ➕ to adjust the backlight features.

To turn on and off the back lit display at certain times during the day, scroll ➡️ to the Backlight control field, and select the ➕ key to check the Backlight Conrol switch.

Scroll ➡️ to adjust the backlight on and off time. Press the ➕ or ➖ keys to adjust the hours and minutes up or down.
5 Other Features

5.1 Radio Controlled Clock (RCC)
After the remote sensor is powered up, the sensor will transmit weather data for 30 seconds, and then the sensor will begin radio controlled clock (RCC) reception. During the RCC time reception period (maximum 5 minutes), no weather data will be transmitted to avoid interference.

If the signal reception is not successful within 3 minute, the signal search will be cancelled and will automatically resume every two hours until the signal is successfully captured. The regular RF link will resume once RCC reception routine is finished. In some locations, RCC reception may take a couple of days to receive the signal.

Once the radio controlled time is received, the RCC reception icon will turn on next to the date and time field.

5.2 SD Card Export and Firmware Updates
With the use of an optional Micro SD Card (available from Ambient Weather), you can export data to a computer, save historical graphs (in the event of a power failure) and update firmware when new versions are released.
5.2.1 SD Data Export

The console includes a micro SD / TF card slot on the right side, as shown in Figure 4.

Backup data to micro SD / TF card (see the Accessories section of this manual for more information on micro SD / TF cards).

The SD card will record data into the HISTORY directory.

The file is comma separated value (csv) and can be imported into Microsoft Excel, or other text based applications.

The file format is as follows:

YYYYCH#A

where YYYY is the year, # is the channel number and A is the revision letter.

Example: 2016CH2A is the data for 2016, Channel 2, and A is the revision letter each time you change a units of measure or calibration setting.

Below is an example of the file output:

Time,Temperature(F),Humidity(%),Dewpoint(F),HeatIndex(F)
2016/02/18 08:05,48.7,32,20.3,48.7
2016/02/18 08:10,49.1,33,21.2,49.1
2016/02/18 08:15,49.1,31,19.8,49.1

5.2.2 Back Up Graph Data

In the event of a power failure, the graph data on the main screen is lost, unless an optional MicroSD Card is inserted into the SD Card Slot. The graph back up data file located on the SD Card is labeled GRAPH.bin.

5.2.3 Firmware Updates

Firmware updates and instructions are available at the following link:

https://www.ambientweather.com/ws3000.html
5.3 PC Software

Optional PC Software is available for download.

The software features:
- Live Data Display
- Program Date and Time
- Program Custom Display
- Set Alarms
- Calibrate Temperature and Humidity
- Export and Graph Data from the SD Card
- Sync Date and Time from the Computer

5.3.1 Getting Started

1. Connect the console to the PC with the USB cable (included)
2. Download the software here:

 www.AmbientWeather.com/ws3000.html

Run the installer. Make a note of where you installed the software:

![Image of installation folder dialog]

Figure 24

3. Run the program. Reference Figure 25. The main display screen will display “Connected” if properly communicating through the USB port.
5.3.2 Time, Date and Display Setup

Select Menu | Setup to set the time, date and display customization settings.

From this screen you can set the graph type on the weather station screen (temperature, humidity, dew point or heat index), graph hours, time zone and daylight savings settings, time and date format, temperature units of measure, archive interval, and display preferences (temperature, humidity, dew point or heat index).

For details, reference Figure 26.
For more information on time, date and display settings, please reference Section 4.1.

5.3.3 Alarm Settings

Select Menu | Alarm to set the high and low temperature and humidity alarms for each of the 8 supported channels.
5.3.4 Calibration

Select Menu | Calibration to calibrate each of the 8 supported channels.

The temperature and humidity values are offsets.

Example: If the actual temperature measured by a calibrated source is 70 °F, and the channel 1 temperature sensor reads 69.5 °F:

\[
\text{CH1 Temperature Offset} = 70 - 69.5 = 0.5 \text{ °F}.
\]

Enter 0.5 in the CH1 Temperature field, as shown in Figure 28.

![Calibration](image)

Figure 28

It may take a minute or two for the console to update the calibrated temperature, since the temperature updates once per minute.

Note: There may be some °F to °C rounding error, since the native calculations are performed in °C. For example, if you enter 0.6 °F in the field, 0.5 °F may be displayed the next time you open this panel.

For more information on Calibration, please reference Section 4.2.

5.3.5 SDCard File

Note: The Micro SD Card is optional, not included and sold separately.
Select [Menu | SDCard File] to download and analyze data stored on the SD Card.

Select the file you wish to view from the list and press Select to view the data.

To graph the data:

1. Identify the data file start and end date and times (Figure 29).
2. Press the Graph button.
3. Enter the start and end date and times in the appropriate fields identified in Step 1 (Figure 30).
4. Select the parameter you wish to graph, and press the Select button.
6 Best Practices for Wireless Communication

Note: To insure proper communication, mount the remote sensor on a vertical surface, such as a wall. Do not lie the sensor flat.

Wireless communication is susceptible to interference, distance, walls and metal barriers. We recommend the following best practices for trouble free wireless communication.

1. Electro-Magnetic Interference (EMI). Keep the console several feet away from computer monitors and TVs.
2. Radio Frequency Interference (RFI). If you have other 915 MHz devices and communication is intermittent, try turning off these other devices for troubleshooting purposes. You may need to relocate the transmitters or receivers to avoid intermittent communication.
3. Line of Sight Rating. This device is rated at 300 feet line of sight (no interference, barriers or walls) but typically you will get 100 feet maximum under most real-world installations, which include passing through barriers or walls.
4. Metal Barriers. Radio frequency will not pass through metal barriers such as aluminum siding. If you have metal siding, align the remote and console through a window to get a clear line of sight.

The following is a table of reception loss vs. the transmission medium. Each “wall” or obstruction decreases the transmission range by the factor shown below.

<table>
<thead>
<tr>
<th>Medium</th>
<th>RF Signal Strength Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass (untreated)</td>
<td>5-15%</td>
</tr>
<tr>
<td>Plastics</td>
<td>10-15%</td>
</tr>
<tr>
<td>Wood</td>
<td>10-40%</td>
</tr>
</tbody>
</table>
7 Glossary of Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>Accuracy is defined as the ability of a measurement to match the actual value of the quantity being measured.</td>
</tr>
<tr>
<td>Hygrometer</td>
<td>A hygrometer is a device that measures relative humidity. Relative humidity is a term used to describe the amount or percentage of water vapor that exists in air.</td>
</tr>
<tr>
<td>Range</td>
<td>Range is defined as the amount or extent a value can be measured.</td>
</tr>
</tbody>
</table>

8 Accessories

<table>
<thead>
<tr>
<th>Accessory</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>microSDHC Class 4 Flash Memory Card SDC4/8GB</td>
<td>MicroSDHC for data backup and advanced data analysis.</td>
</tr>
</tbody>
</table>

9 Specifications

9.1 Wireless Specifications
- Line of sight wireless transmission (in open air): 300 feet, 100 feet under most conditions.
- Frequency: 915 MHz
- Update Rate: About 60 seconds

9.2 Measurement Specifications
The following table provides specifications for the measured parameters.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Range</th>
<th>Accuracy</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoor Temperature</td>
<td>32 to 140 °F</td>
<td>± 2 °F</td>
<td>0.1 °F</td>
</tr>
<tr>
<td>Outdoor Temperature</td>
<td>-40 to 140 °F</td>
<td>± 2 °F</td>
<td>0.1 °F</td>
</tr>
<tr>
<td>Indoor Humidity</td>
<td>10 to 99%</td>
<td>± 5% (only guaranteed between 20 to 90%)</td>
<td>1%</td>
</tr>
<tr>
<td>Outdoor Humidity</td>
<td>10 to 99%</td>
<td>± 5% (only guaranteed between 20 to 90%)</td>
<td>1%</td>
</tr>
</tbody>
</table>

9.3 Power Consumption
- Base station (display console) : AC Power
- Remote sensor : 2 x AA 1.5V Alkaline or Lithium batteries (not included)
- Battery life: Minimum 12 months for base station with one sensor and excellent reception. Intermittent reception and multiple sensors may reduce the battery life. Minimum 12 months for thermometer-hygrometer sensor (use lithium batteries in cold weather climates less than -4 °F)
10 Troubleshooting Guide

If your question is not answered here, you can contact us as follows:

1. Email Support: support@ambientweather.com
2. Technical Support: 480-346-3380 (M-F 8am to 3pm Arizona Time)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wireless remote (thermo-hygrometer) not reporting in to console.</td>
<td>If any of the sensor communication is lost, dashes (--.--) will be displayed on the screen. To reacquire the signal, re-acquire the signal per Section 4.4.3. Please verify each sensor is on a different channel by viewing the sensor’s LCD display. The maximum line of sight communication range is 300’ and 100’ under most conditions. Move the sensor assembly closer to the display console. If the sensor assembly is too close (less than 5’), move the sensor assembly away from the display console. Make sure the remote sensor LCD display is working. Install a fresh set of batteries in the remote thermo-hygrometer. For cold weather environments, install lithium batteries. Make sure the remote sensors are not transmitting through solid metal (acts as an RF shield), or earth barrier (down a hill). Move the display console around electrical noise generating devices, such as computers, TVs and other wireless transmitters or receivers. Move the remote sensor to a higher location. Move the remote sensor to a closer location.</td>
</tr>
<tr>
<td>Temperature sensor reads too high in the day time.</td>
<td>Make sure the thermo-hygrometer is mounted in a shaded area on the north facing wall. Consider the following radiation shield if this is not possible: http://www.ambientweather.com/amwesrpatean.html</td>
</tr>
<tr>
<td>Temperature sensors do not agree</td>
<td>Allow up to one hour for the sensors to stabilize due to signal filtering. The sensors should agree within 4 °F (the sensor accuracy is ± 2 °F) under worst case conditions. Use the calibration feature to match the indoor and outdoor temperature to a known source.</td>
</tr>
<tr>
<td>Humidity sensors do not agree</td>
<td>Allow up to one hour for the sensors to stabilize due to signal filtering. The indoor and outdoor humidity sensors should agree within 10 % (the sensor accuracy is ± 5 %) under worst case conditions.</td>
</tr>
<tr>
<td>Problem</td>
<td>Solution</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Use the calibration feature to match the indoor and outdoor humidity to a known source.</td>
<td></td>
</tr>
<tr>
<td>Display console contrast is weak</td>
<td>Check the backlight display settings referenced in Section Back Light.</td>
</tr>
</tbody>
</table>

11 Liability Disclaimer

Please help in the preservation of the environment and return used batteries to an authorized depot. The electrical and electronic wastes contain hazardous substances. Disposal of electronic waste in wild country and/or in unauthorized grounds strongly damages the environment.

Reading the “User manual” is highly recommended. The manufacturer and supplier cannot accept any responsibility for any incorrect readings and any consequences that occur should an inaccurate reading take place.

This product is designed for use in the home only as indication of weather conditions. This product is not to be used for medical purposes or for public information.

The specifications of this product may change without prior notice.

This product is not a toy. Keep out of the reach of children.

No part of this manual may be reproduced without written authorization of the manufacturer.

Ambient, LLC WILL NOT ASSUME LIABILITY FOR INCIDENTAL, CONSEQUENTIAL, PUNITIVE, OR OTHER SIMILAR DAMAGES ASSOCIATED WITH THE OPERATION OR MALFUNCTION OF THIS PRODUCT.

12 FCC Statement

Statement according to FCC part 15.19:
This device complies with part 15 of the FCC rules. Operation is subject to the following two conditions:

1. This device may not cause harmful interference.
2. This device must accept any interference received, including interference that may cause undesired operation.

Statement according to FCC part 15.21:
Modifications not expressly approved by this company could void the user's authority to operate the equipment.

Statement according to FCC part 15.105:
NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
 - Reorient or relocate the receiving antenna.

Version 1.5 ©Copyright 2019, Ambient LLC. All Rights Reserved.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

13 Warranty Information

Ambient, LLC provides a 1-year limited warranty on this product against manufacturing defects in materials and workmanship.

This limited warranty begins on the original date of purchase, is valid only on products purchased and only to the original purchaser of this product. To receive warranty service, the purchaser must contact Ambient, LLC for problem determination and service procedures.

Warranty service can only be performed by a Ambient, LLC. The original dated bill of sale must be presented upon request as proof of purchase to Ambient, LLC.

Your Ambient, LLC warranty covers all defects in material and workmanship with the following specified exceptions: (1) damage caused by accident, unreasonable use or neglect (lack of reasonable and necessary maintenance); (2) damage resulting from failure to follow instructions contained in your owner’s manual; (3) damage resulting from the performance of repairs or alterations by someone other than an authorized Ambient, LLC authorized service center; (4) units used for other than home use (5) applications and uses that this product was not intended (6) the products inability to receive a signal due to any source of interference or metal obstructions and (7) extreme acts of nature, such as lightning strikes or floods.

This warranty covers only actual defects within the product itself, and does not cover the cost of installation or removal from a fixed installation, normal set-up or adjustments, claims based on misrepresentation by the seller or performance variations resulting from installation-related circumstances.